Spectral properties and isomerisation path of retinal in C1C2 channelrhodopsin.

نویسندگان

  • I Dokukina
  • O Weingart
چکیده

Structure and excited state isomerisation pathway of retinal in the channelrhodopsin chimera C1C2 have been investigated with combined quantum mechanical/molecular mechanical (QM/MM) techniques, applying CD-MS-CASPT2//CASSCF and DFT-MRCI quantum methods. The absorbing S1 state is of (1)Bu-like character, and the second excited S2 state is dominated by HOMO-LUMO double excitation with small oscillator strength. Upon photoexcitation and torsion along the reactive C13[double bond, length as m-dash]C14 double bond we observe bond length equalisation and a two-path deactivation mechanism in positive and negative torsion directions. The computed path is barrierless in positive direction while a small barrier exists for the opposite side. Comparative protonation studies suggest a charged glutamate E162 residue, with computed resonance Raman data in valuable agreement with experimental channelrhodopsin-2 data. The two negatively charged counter-ions and a positive lysine residue close to the retinal Schiff base terminus have the largest influence on the chromophore absorption wavelength.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational screening of one- and two-photon spectrally tuned channelrhodopsin mutants.

Optogenetics is by now a well-established field within neuroscience where neuro-response is controlled at the molecular level using the photochemical properties of channelrhodopsin (ChR). In this study the recently published X-ray structure of retinal inside the ChR binding pocket serves as the basis for conducting high-level polarizable embedding quantum mechanical/molecular mechanical (QM/MM)...

متن کامل

Molecular Dynamics of Channelrhodopsin at the Early Stages of Channel Opening

Channelrhodopsin (ChR) is a light-gated cation channel that responds to blue light. Since ChR can be readily expressed in specific neurons to precisely control their activities by light, it has become a powerful tool in neuroscience. Although the recently solved crystal structure of a chimeric ChR, C1C2, provided the structural basis for ChR, our understanding of the molecular mechanism of ChR ...

متن کامل

Using Temperature of IR Sources for Assessing Photochemical and Aphakic Retinal Hazard

Introduction Blue light is a part of the spectrum with the highest energy content, which can reach the retina. The damage that it can cause to the retina is called photochemical or blue-light retinal injury. For the retinal injury assessment of the photochemical and aphakic retinal hazards in the wavelength range of 300-700 nm, use of effective spectral radiance limits (W.m-2.sr-1) seems to be ...

متن کامل

Retinal Ganglion Cell Complex in Alzheimer Disease: Comparing Ganglion Cell Complex and Central Macular Thickness in Alzheimer Disease and Healthy Subjects Using Spectral Domain-Optical Coherence Tomography

Introduction: Alzheimer disease (AD) is the most common form of dementia worldwide. The modalities to diagnose AD are generally expensive and limited. Both the central nervous system (CNS) and the retina are derived from the cranial neural crest; therefore, changes in retinal layers may reflect changes in the CNS tissue. Optical coherence tomography (OCT) machine can show delicate retinal layer...

متن کامل

Compliance of Radiation Dose and Image Quality in a Nigerian Teaching Hospital with the European Guidelines for Pediatric Screen-Film Chest Radiography

Introduction Blue light is a part of the spectrum with the highest energy content, which can reach the retina. The damage that it can cause to the retina is called photochemical or blue-light retinal injury. For the retinal injury assessment of the photochemical and aphakic retinal hazards in the wavelength range of 300-700 nm, use of effective spectral radiance limits (W.m-2.sr-1) seems to be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 38  شماره 

صفحات  -

تاریخ انتشار 2015